mTOR pathway activation drives lung cell senescence and emphysema.

نویسندگان

  • Amal Houssaini
  • Marielle Breau
  • Kanny Kebe
  • Shariq Abid
  • Elisabeth Marcos
  • Larissa Lipskaia
  • Dominique Rideau
  • Aurelien Parpaleix
  • Jin Huang
  • Valerie Amsellem
  • Nora Vienney
  • Pierre Validire
  • Bernard Maitre
  • Aya Attwe
  • Christina Lukas
  • David Vindrieux
  • Jorge Boczkowski
  • Genevieve Derumeaux
  • Mario Pende
  • David Bernard
  • Silke Meiners
  • Serge Adnot
چکیده

Chronic obstructive pulmonary disease (COPD) is a highly prevalent and devastating condition for which no curative treatment is available. Exaggerated lung cell senescence may be a major pathogenic factor. Here, we investigated the potential role for mTOR signaling in lung cell senescence and alterations in COPD using lung tissue and derived cultured cells from patients with COPD and from age- and sex-matched control smokers. Cell senescence in COPD was linked to mTOR activation, and mTOR inhibition by low-dose rapamycin prevented cell senescence and inhibited the proinflammatory senescence-associated secretory phenotype. To explore whether mTOR activation was a causal pathogenic factor, we developed transgenic mice exhibiting mTOR overactivity in lung vascular cells or alveolar epithelial cells. In this model, mTOR activation was sufficient to induce lung cell senescence and to mimic COPD lung alterations, with the rapid development of lung emphysema, pulmonary hypertension, and inflammation. These findings support a causal relationship between mTOR activation, lung cell senescence, and lung alterations in COPD, thereby identifying the mTOR pathway as a potentially new therapeutic target in COPD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Caveolin-1, cellular senescence and pulmonary emphysema

Caveolae are vesicular invaginations of the plasma membrane. Caveolin-1 is the structural protein component of caveolae. Caveolin-1 participates in signal transduction processes by acting as a scaffolding protein that concentrates, organizes and functional regulates signaling molecules within caveolar membranes. Cigarette smoke, a source of oxidants, is an environmental hazard that causes pulmo...

متن کامل

SIRT1 protects against emphysema via FOXO3-mediated reduction of premature senescence in mice.

Chronic obstructive pulmonary disease/emphysema (COPD/emphysema) is characterized by chronic inflammation and premature lung aging. Anti-aging sirtuin 1 (SIRT1), a NAD+-dependent protein/histone deacetylase, is reduced in lungs of patients with COPD. However, the molecular signals underlying the premature aging in lungs, and whether SIRT1 protects...

متن کامل

mTOR complex 2 activation by reconstituted high-density lipoprotein prevents senescence in circulating angiogenic cells.

OBJECTIVE Circulating angiogenic cells (CACs) participate in neovascularization and arterial repair. Although high-density lipoprotein (HDL) is known to enhance the functional activity of CACs, the mechanisms underlying this regulation are poorly understood. Here, we examined the mechanism(s) by which reconstituted HDL (rHDL) affects CAC senescence. METHODS AND RESULTS CACs isolated from huma...

متن کامل

The choice between p53-induced senescence and quiescence is determined in part by the mTOR pathway

Transient induction of p53 can cause reversible quiescence and irreversible senescence. Using nutlin-3a (a small molecule that activates p53 without causing DNA damage), we have previously identified cell lines in which nutlin-3a caused quiescence. Importantly, nutlin-3a caused quiescence by actively suppressing the senescence program (while still causing cell cycle arrest). Noteworthy, in thes...

متن کامل

Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway

Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • JCI insight

دوره 3 3  شماره 

صفحات  -

تاریخ انتشار 2018